Implicit Runge-Kutta Based Convolution Quadrature Time-domain Fast Multipole Boundary Element Method for 3-D Scalar Wave Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta convolution quadrature for operators arising in wave propagation

An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutt...

متن کامل

Generalized convolution quadrature based on Runge-Kutta methods

Convolution equations for time and space-time problems have many important applications, e.g., for the modelling of wave or heat propagation via ordinary and partial differential equations as well as for the corresponding integral equation formulations. For their discretization, the convolution quadrature (CQ) has been developed since the late 1980’s and is now one of the most popular method in...

متن کامل

Analytical integration of the moments in the diagonal form fast multipole boundary element method for 3-D acoustic wave problems

A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving 3-D acoustic wave problems based on the Burton–Miller boundary integral equation (BIE) formulation. Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant elements, which are shown to be more accurate, stable and efficient than those using direct numeric...

متن کامل

A fast multipole boundary element method for 2D viscoelastic problems

A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion equations are formed and solved analytically in Laplace transform domain. Three commonly used viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since the trans...

متن کامل

Runge-kutta Methods for Parabolic Equations and Convolution Quadrature

We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM))

سال: 2013

ISSN: 2185-4661

DOI: 10.2208/jscejam.69.i_175